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'ABSTRACT - +
; Laser~-induced periodic pattern formation has been observed ° “i.gp1p314;ﬁ7

jon a variety of substances. In particular, low-power lasers

Avalilanio tqly
—have been used'to deposit a pattern on a metal surface. For a . b R

_relatively smooth surface grating, this pattern can be explained AVeLll &p
in terms of a perturbative solution of Maxwell's equations. .‘1“t | opa t”'
—.However, as the.surface grating!is enhanced by this initial de- ! ‘~I :_
position, the perturbation solution breaks down. An alternate ¢ f &
_non~perturbative'solution of Maxwell's equations for such rough | -
{surfaces is considered here. Moreover, other possible mechanisms -
‘that may assist pattern formation:-are discussed, such as field- L
~enhanced evaporatlon and surface mlgratlon.
=l R R T 7o B B i oo 1 B i
1 -
JINTRODUCTION iz : G i TR t
B Over the past several years, a number of researchers [1-17] have f

_observed periodic patterns developing onthe surfaces of solids that were
_exposed to laser radiation. These patterns have been seen on various metals, -
insulators, and both doped and pure semiconductors. Most of these experi- -
_ments were carried out with Nd:YAG or ND:glass lasers tuned to wavelengths ;-
_between 1.0 ym and 10.0 um. To obtain these patterns, laser power densities | -

bf between 10 MW/cm? and 1 GW/cm? were employed. Above this range, surface
_melting would occur, while below this level, no discernible surface pattern F
—.was observed. i

] .

Ml This laser-induced periodic surface structure has several characteristics.
First, the surface pattern consists of a number of parallel grooves running -
—perpendicular to the E field of *he incident laser. Second, Oron and R

_Sorensen [8] demonstrated that the underlying surface lattice has no effect
Bn the shape of the laser-induced surface structure. On the other hand,
_Isenor [6] has shown that the existence of scratches on the surface can have
.a significant effect on the final surface structure. In fact, if the surface
.ds randomly scratched, no periodic surface structure will form. Both Brueck
and Ehrlich [12] and van Driel and his colleagues [13] have also observed

the development of a weaker secondary pattern parallel to the incident E
field. With this secondary structure, the surface takes on a scalloped '
appearance. Finally, these surface patterns produce large drops in the
reflectivity of several metals [3-4]).

A Most of the work so far has considered laser-induced periodic structures
on surfaces that already had a certain composition. Needless to say, this
necessitates large laser power densities (greater than 10 MW/cm2) in order to
provide sufficient energy for the .surface atoms to rearrange. However,-
-Brueck and Ehrlich [12] showed that only a modest amount of laser power (less
_than 10 W/cm2) is needed to establish the periodic surface structure when the
constituent atoms are deposited from the gas phase. 1In particular, they +
showed that Cd, Zn and Al in organometallic compounds could be photochemically
deposited on Si or SiO substrates in ordered arrays. '

—m—es oo s - . g i - e : = - e e am v -3




v 3 Do To understand these observations znd resolve any difficulties. one must
consider how this laser-induced periodic surface structure is produced.
There have been three attempts to explzin these effects. First, since many
. metals have a plasma frequency around the frequency of the incident laser
{radiation, surface plasmons will be excited [11-12]. These plasmons will
-lcouple with the electromagnetic field to form a surface polariton. Since -
- this polariton produces maxima and minima in the E field of the surface,
:the surface atoms will rearrange themselves to minimize their energy in this .
+E field. Second, Maracas et al [7] have observed that the periodic surface
1structure can be considered a standing wave. This wave would have a velocity
{very close to that of a longitudinal acoustic phonon of the substrate. Thus,-
_{the surface pattern may well be a phonon excited by the laser that was =
‘""frozen”" in place by the cooling of tha lattice. Finally, van Driel and his
Jassociates [15] have proposed an extensive theory based on the small inhomo- -
]geneities that exist:in the surface layer. ..This initial surface roughness -
4will interact with the incident laser beam to produce a dipole moment in the.
osurface layer (a '"radiation remnant"). The field generated by this dipole -
—{layer can interfere>with the refracted beam in the substrate below the sur- —
lface. This interference will lead to 1nhomogeneous energy absorption and -
!thus the redistribution of the surface atoms.: By 3 i
i In the following:section, the thecry of’ the surface enhanced E field
‘produced by relatively smooth surfaces and the resultant pattern formation
_iwill be viewed. oThe:inapplicability of this approach to rough gratings will —
+be demonstrated. To overcome this liritation, a non-perturbative solution of
_Maxwell's equations will be discussed. Finally, our:results will be pre-
4sented along with suggested improvements.

Incident radiation converted to surface plasmon excitations via surface -
roughness has been investigated extensively in the past decade [18]. The
classical method of Rayleigh [19] has often been used to solve the problem
of weak scattering [20]. Brueck and Enrlich [12] also adapted this formalism-
_{to describe the phenomena of laser-induced pattern formation. Here, we will —

B R e

1

__|THEORY OF SMOOTH GRATINGS
.
.

, lbriefly outline the theory of Brueck and Ehrlich and discuss its validation }
| dand limitation. a
g L

2 Let a light wave of frequency w represented by an electric field L

= L
il E (r t) = E eikoz iwt (1)

1 = -

ibe incident on the metal surface at a normal angle, on the xz-plane. 1If we
sexpress the surface roughness in terms of a Fourier expansion,

> & -
ig » - 4

g » 3= (goe), Ty = (LY, (2)

.b—

; z = E(x,y) = Euge
i [

and assume that each amplitude u, is small compared to the wavelength of the
incident light, then taking the §ielec:ric function as a step functionm,

~ I

e(w,t) = e(W)0(z-£) + O(E-2), (3)

we can_write down the solutions 'of ‘the Maxwell's equations separately for the
_two media. In particular, for g2 > w2/¢23nd z > £, we have

- 3 o Iee
: Fageihor 4 f othor L F o8 oher, )
a3 .

where k2 2 - w2/c2. By imposing the boundary conditions, 3y €., the local'

b e E ——— 2
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tangential components of the electric and magnetic fields have to be con-
tinuous across the actual sqgface z = E(x,y), we can express the geflected
and surface plasmon fields, E_ and respectively, in terms of E, by
writing 2 sP i .

LkoE

e

iand assuming gf <<1 in the continuity equations. If we consider only the 5
p-wave scattering, i.e., the light polarized in the x-direction, the ;
expression of Brueck and Ehrlich for E__ can then be easily obtained. 1If we*
assume a linear relationship between tB8 film growth rate and the local r

Jintensity, i
: dT > > . b
] dt + I\(}\.) :J?_IE.:EL’ Kl =58 3% 229 fke €08 S (6)~

~ithen the suggested equation of the grating depth u§ is obtained by assuming

~la spatial prof;}eaog B T°k+tucq§(gx))and neglecting thezlfspl term.
N The foregoing theory was. developed under the assumption that the sur-
“1face roughness is “émall, g <<'1. However, as more metal is deposited, the
TJroughness increases. .In.the perturbative theory of Brueck and Ehrlich, E
“is proportional to thé'roughgess'ﬁ.‘JThéréforé; the first consequence of
“increased roughness is that |E__ |4 can no longer be neglected. This point
—dnay already be reached when tBE8 grating is only ‘a few layers deep. Moreover,
the damping of ‘E__ can no longer be measured from the mean surface. An 7
Jincrease in roughBess can leéad to sufficient enlancemert of <p that localized
.evaporation of metal atoms could play an important role. Trafiffer of large |-
amounts of energy to the metal-carbon bond, such as in the deposition of Cd
on Si due to the dissociation of gaseous Cd(CH3) » may also induce sufficient
translational motion along the surface so that agsorption does not occur at
the dissociation site. Such dissociation under several possibly physisorbed |~
organometallic layers could lead to trapping of the organic radical in the
~vicinity of the surface. This '"cage'" effect could lead to the reformation
“of the organic metal bond. Finally, the effect of surface roughness on the
4die1ectric function might be important. Such increases of surface area
‘jzould substantially alter the magnitude of this function, which in turn

i‘

ould enhance the rate of pattern formation.

ENERALIZATION TO ROUGH GRATINGS

‘i The foregoing considerations lead us to conclude that an explanation of |
d

eep pattern formation requires a non-perturbative treatwment of plasmon
2 ormation, and at the present time a numerical solution of Maxwell's equations
seems inevitable. Recently (21] there has appeared a solution of the problem™
“of a square-well metallic grating in an applied electromagnetic field i
4(FIG. 1b). Such a solution is restricted to explaining the most qualitative
““features of sinusoidal grating formation. We have established a general ‘
formulation of the problem which is capable in principle of handling gratings”
of any shape or depth.

! In the H polarization, Maxwell's equations can be written as [22]

’.‘; azn % aZH 2 0 -afx a P 5 . .__ Seae = M
| = + _zaxz + e (k] Hy= 5w 5 LERe(®) ], ),

‘where H_ is the component of the magnetic field H in the direction perpendi-
cular td the lattice vector of the grating (FIG. 1). For square-well
‘gratings, Hy 1s separable, - L

=
F
(]

= (1 + 1kgE) (5):~

lIlTl"lI

.T.'... ——
semsem

‘31
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Hy(x,y) = Z(z) X(x) , (8) 1

and Eq. (7) can be written as two coupled first-order differential equations;‘
) 0

o S (9a)
92 ‘

‘- 2’x X 2 _ 2 . [:
2% [(Lne(x)] o + [e(x)k ° - A7]X = 0. (9b)|--

=
:

—GWhen the applied radiation is incident normal to the grating, it is found L
»that A is the solution of the equation |

—
)
> net be

{ L
1 - cos(Bd/Z)cos(ad/Z)‘+ 1/2(ea/B + B/(ae))51n(8d/2) sin(ad/Z) 0, (IOX_

o grth

where d is th pnriod of the grating, .€ 'is the dielectric constant of the t_
agrating, a (k - A2 ) 1/2 and 8 = (ek 2 _p2 ) 1/2, [
- ua 1hel digkel o ankn il 1  astlie) oof

The problem to be considered (FIG. lc) is that of a multilayered gratlng |
‘Jn each layer the grating is:periodic and.the general solution to Eq. (9) for
the n-th layer may be written as

_‘é ET AR iA"
1 W1l - {x (x)[A nﬁz

T

rn 75 ° o 289 P

.l 1 .. > —
+B ,e “\“ﬂz] ; (11)_
71"< I o e = 35 LA PEEN - L e LD E o3

1]
—

1

@1

_where the coefficients A and B are to be determined by the boundary condition
between layers, and A is the £-th solution to Eq. (10) for the n-th layer.
__By applying the boundary condition of continuity of H and é— between layers,

ye can establish the recursion relations for A and B,y

- K'ﬂ = lan,n—lxn—l i Fn,n—l n-1 (12a)_

3 —
L

] s ;)

— B Cn,n-IKn—l el (12b)—

~where the matrices C, D, E, F are determined by the periodic structure of »

ach layer. Furthermore, we can establish boundary conditions between the [
—top two layers and the two lowest layers. In the topmost (infinite) layer,
_Erhe eigensolution is written as [21]

li,1 = e-ikoz P 2 Rneikanx + (I—Y ) ] (13)
] n=-e b

In the lowest (infinite layer) we have B

2,1/2

4 1/2 »
~ i‘ Wm = 2 T ik [Ynx = (C -Yn ) z] (Ib)s..—
j ni i
.yhere Yo ® T
f It is now possible to establish j
: iy weree 4L ; L Qo Tine, i ;
—-Ki‘=a3+b§°-’ e S Sie - e sl s s LG
| F
. "ﬁl = bD + akR, (15b).
l R i
where D is a unit vector. In addition, {




r | A y L maeepeno b coame ee P 7
A . - =

;
4 \ 4 ‘ .

N LBN’ (16)
1 where N labels the penultimate (finite) layer, and the matrix L is determined

by the parameters which characterize that layer. However, by applying the
; recursion relations of Eq. (12), it is possible to establish E_

[

] _ >
1 , X, - 3D+ Jzi (17a);
- + = i
: By xliS + xzi (17b)r_
—'Rearranging (16) and (17) gives ;
4
] i _ A | -1 RE - . AR C
i R = (@, - 1K) (LK, - J,)D, \ T (18)-

{

.‘and by employing Eq. (12) once more we arrlve flnally at a matrix equation !

'for the vectors KM and B SR (PSSP p, Saf e SR o E_
IS
|
=

,_i e e R ) v
A - % n,n-1 n,n—l] 2 (19)
I A B RIS SR :
. M n,n-1 n,n-1 iR
L senir zod - 75¢ o 1
RESULTS AND DISCUSSION 2 b e 0710 2 I e Bl : . -
]

, We have made a rellminary calculation for a square-well silver grating..
_'The field intensity TE(Z x)l is averaged over x at each of two values of !.
_2'(z =0 and z = -h), and the ratio R = [E(z= -h)|2/[E(z = 0)1? 4is plotted —
‘as a function of the well-depth (roughness parameter) h (FIG. 2). R is thus |-
_'the ratio of intensity in the "peak" region of the grating to that in the s
4"we11" region. For very shallow gratings (h < 0.5 nm), or about two mono- L
. .layers) it is seen that |E(z=0)I4 > |E(z = -h)|2, which supports the pertur- -
_bation description of Brueck and Ehrlich. This would explain how a particular

__igrating establishes itself out of the "noise'" of microscopic roughness. It |-

;also explains why the establishment of such a grating for low-power lasers |
jtequires the photodissociation of an organometallic compound and does not L
_ioccur in the presence of metal vapor alone. However, at a certain depth r
(around 0.5 nm) |E(z = —h)|5 begins to increase very rapidly. It seems here _
that the grating structure will only continue to reinforce itself by a &
_ﬂmechanism other than photodeposition. Such a mechanism might be photo- —
_evaporation of the grating itself, whereby the trough regions are '"excavated" .
by the field. Finally, we note that as h +~ », |E(z = -h)|2 + 0. This is L
_iconsistent with an upper unit to the growth of the grating. Work is currently
underway to determine whether these qualitative trends are consistent also .
with sinusoidal gratings. b
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—4 FIG. 2. Log-log plot of the ratio R = IE(z=-h){ 2/1E(z=0)]2 against
= the grating depth h, for a silver grating with d = 1050 nm and
% A = 700 nm. The horizontal line corresponds to R = l. Above
= the line the intensity is greatest in the region of the well
- (z = -h); below the line the intensity is greatest in the
B

condition pertains for very smooth gratings (h = 0) and also
for very rough gratings (h + «)
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